首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15449篇
  免费   1511篇
  国内免费   1551篇
  2024年   9篇
  2023年   299篇
  2022年   284篇
  2021年   471篇
  2020年   594篇
  2019年   849篇
  2018年   718篇
  2017年   693篇
  2016年   678篇
  2015年   635篇
  2014年   764篇
  2013年   1483篇
  2012年   486篇
  2011年   696篇
  2010年   596篇
  2009年   822篇
  2008年   876篇
  2007年   777篇
  2006年   777篇
  2005年   662篇
  2004年   635篇
  2003年   553篇
  2002年   511篇
  2001年   380篇
  2000年   351篇
  1999年   332篇
  1998年   272篇
  1997年   250篇
  1996年   241篇
  1995年   246篇
  1994年   201篇
  1993年   191篇
  1992年   181篇
  1991年   145篇
  1990年   126篇
  1989年   112篇
  1988年   92篇
  1987年   89篇
  1986年   66篇
  1985年   77篇
  1984年   59篇
  1983年   23篇
  1982年   55篇
  1981年   49篇
  1980年   25篇
  1979年   17篇
  1978年   16篇
  1977年   14篇
  1976年   9篇
  1973年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Recent studies have discovered strong differences between the dynamics of nucleic acids (RNA and DNA) and proteins, especially at low hydration and low temperatures. This difference is caused primarily by dynamics of methyl groups that are abundant in proteins, but are absent or very rare in RNA and DNA. In this paper, we present a hypothesis regarding the role of methyl groups as intrinsic plasticizers in proteins and their evolutionary selection to facilitate protein dynamics and activity. We demonstrate the profound effect methyl groups have on protein dynamics relative to nucleic acid dynamics, and note the apparent correlation of methyl group content in protein classes and their need for molecular flexibility. Moreover, we note the fastest methyl groups of some enzymes appear around dynamical centers such as hinges or active sites. Methyl groups are also of tremendous importance from a hydrophobicity/folding/entropy perspective. These significant roles, however, complement our hypothesis rather than preclude the recognition of methyl groups in the dynamics and evolution of biomolecules.  相似文献   
32.
33.
The presence of litter has the potential to alter the population dynamics of plants. In this paper, we explore the effects of litter on population dynamics using a simple experimental laboratory system with populations of the annual crucifer, Cardamine pensylvanica. Using a factorial experiment with four densities and three litter levels, we determined the effect of litter on biomass and plant fecundity, and the life stages responsible for these changes in yield. Although litter had significant effects on seed germination and on seedling survivorship, we show, using a population dynamics model, that these effects were not demographically significant. Rather, the potential effect of litter on population dynamics resulted almost entirely from its effect on biomass. Persistent litter suppressed plant biomass and apparently removed the direct density effect present in the absence of litter. Thus, litter changed the shape of the recruitment curve from slightly humped to asymptotic. In addition to changing the shape of the recruitment curve, litter reduced the carrying capacity of the populations. Thus, the population dynamics model indicated that not all statistically significant responses were dynamically significant. Given the potential complexity of litter effects, simple population models provide a powerful tool for understanding the potential consequences of short-term responses. Received: 8 September 1999 / Accepted: 5 April 2000  相似文献   
34.
35.
Conservation of natural values within farming practice is growing rapidly within the Netherlands. The focus is primarily on terrestrial flora and fauna such as the vegetation in ditch banks and meadow birds. Knowledge needed to enhance biodiversity in ditches is limited. Therefore, a field study was set up to determine the effects of dredging, ditch cleaning and nutrient supply in the adjacent fields on caddisfly, dragonfly and amphibian larvae in the ditches in a peat area.Two-hundred forty ditches spread over 84 dairy farms were selected to determine the individual effect of several management aspects. Generalised linear modelling was used as a tool to detect the most relevant aspects and to obtain quantitative relations with the chance of the larvae being present.Dredging had an impact on the presence of all larvae types. The type of dredging machine, the dredging period, the water depth and the frequency of dredging can influence the presence of the larvae. The presence of caddisfly larvae was also affected by the cleaning machine and period and by the P supply in the adjacent field. The presence of amphibian larvae was also affected by the cleaning period.Measures that will enhance the presence of the larvae are formulated. Options for water boards and other government authorities to stimulate farmers to take these measures are given.  相似文献   
36.
37.
38.
To explain higher-level heritability, we propose a dynamical systems approach, based on simulations of the high-dimensional replicator equation with mutation dynamics. We assume that all variants are generated from within the groups of variants through mutations. Simulating the equation with a random interaction matrix and possible variants, we report that this system tends to have many attractors, of fixed point, chaotic and quasiperiodic type. In a chaotic attractor, special gene-like variants appear to control the heritability ofthe system, in the sense that removal of the variants would easily enable the system to depart from the attractor. Those variants do not predominate in thepopulation size, but have the lowest net reproduction and mutation rates on average. Because their rate of growth is small, they are named neutral phenotypes. Additionally, combinatorial effects of these neutral variants to the entire system are reported.  相似文献   
39.
The carboxy-terminal alpha-helix of a nuclear receptor ligand-binding domain (LBD), helix 12, contains a critical, ligand-modulated interface for the interaction with coactivator proteins. In this study, using the example of the vitamin D receptor (VDR) and the partial antagonist ZK159222, the role of helix 12 (residues 417-427) for both antagonistic and agonistic receptor actions was investigated. Amino acid residue G423 was demonstrated to be critical for partial agonism of ZK159222, but not for the activity of the natural VDR agonist, 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)). The amount of partial agonism of ZK159222 increased when helix 12 was truncated by the last four amino acid residues (Delta424-27) and augmented even more, when in addition helix 12 of VDR's dimerization partner, retinoid X receptor (RXR), was truncated. In contrast, the low agonism of a structural derivative of ZK159222, ZK168281, was not affected comparably, whereas other close structural relatives of ZK159222 even demonstrated the same agonistic activity as that of 1alpha,25(OH)(2)D(3). The amount of agonism of ZK159222 and ZK168281 at different variations of helix 12 correlated well with VDR's ability to complex with coactivator proteins and inversely correlated with the strength of the compound's antagonistic action on 1alpha,25(OH)(2)D(3) signalling. Molecular dynamics simulations of the LBD complexed with the two antagonists could explain their different action by demonstrating a more drastic displacement of helix 12 through ZK168281 than through ZK159222. Moreover, the modelling could indicate a kink of helix 12 at amino acid residue G423, which provides the last four amino acid residues of helix 12 with a modulatory role for the partial agonism of some VDR antagonists, such as ZK159222. In conclusion, partial agonism of a VDR antagonist is lower the more it disturbs helix 12 in taking the optimal position for coactivator interaction.  相似文献   
40.
MPV17 is an integral inner mitochondrial membrane protein, whose loss-of-function is linked to the hepatocerebral form of the mitochondrial-DNA-depletion syndrome, leading to a tissue-specific reduction of mitochondrial DNA and organ failure in infants. Several disease-causing mutations in MPV17 have been identified and earlier studies with reconstituted protein suggest that MPV17 forms a high conductivity channel in the membrane. However, the molecular and structural basis of the MPV17 functionality remain only poorly understood. In order to make MPV17 accessible to high-resolution structural studies, we here present an efficient protocol for its high-level production in E. coli and refolding into detergent micelles. Using biophysical and NMR methods, we show that refolded MPV17 in detergent micelles adopts a compact structure consisting of six membrane-embedded α-helices. Furthermore, we demonstrate that MPV17 forms oligomers in a lipid bilayer that are further stabilized by disulfide-bridges. In line with these findings, MPV17 could only be inserted into lipid nanodiscs of 8–12 nm in diameter if intrinsic cysteines were either removed by mutagenesis or blocked by chemical modification. Using this nanodisc reconstitution approach, we could show that disease-linked mutations in MPV17 abolish its oligomerization properties in the membrane. These data suggest that, induced by oxidative stress, MPV17 can alter its oligomeric state from a properly folded monomer to a disulfide-stabilized oligomeric pore which might be required for the transport of metabolic DNA precursors into the mitochondrial matrix to compensate for the damage caused by reactive oxygen species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号